Markov Chain Monte Carlo Without all the Bullshit

Math ∩ Programming

I have a little secret: I don’t like the terminology, notation, and style of writing in statistics. I find it unnecessarily complicated. This shows up when trying to read about Markov Chain Monte Carlo methods. Take, for example, the abstract to the Markov Chain Monte Carlo article in the Encyclopedia of Biostatistics.

Markov chain Monte Carlo (MCMC) is a technique for estimating by simulation the expectation of a statistic in a complex model. Successive random selections form a Markov chain, the stationary distribution of which is the target distribution. It is particularly useful for the evaluation of posterior distributions in complex Bayesian models. In the Metropolis–Hastings algorithm, items are selected from an arbitrary “proposal” distribution and are retained or not according to an acceptance rule. The Gibbs sampler is a special case in which the proposal distributions are conditional distributions of single components of a vector parameter. Various special cases…

Ver la entrada original 2.908 palabras más